# DATA SHEET <br> 新特光电 Sintec Optronics 

## S4LFT3170／075

telecentric F－Theta
－for 355 nm
－fused silica
－standard coating


| specifications |  |
| :---: | :---: |
| article number | S4LFT3170／075 |
| design wavelength［ nm ］ | 355 |
| effective focal length［mm］ | 163.4 |
| max．entrance beam－Ø［mm］ | 10.0 |
| optical scan angle［ $\pm^{\circ}$ ］ | 23.1 |
| scan length［mm］ <br> （1 mirror system） | 127.3 |
| aperture stop distance［mm］ | 26 |
| working distance［mm］ | 221.7 |
| scan area for a 2 mirror system with mirror distance from lens housing for mirror 2 ／mirror 1 | $\begin{gathered} 90 \times 90 \\ 18.0 / 34.0 \end{gathered}$ |
| max．telecentricity error ${ }^{[0]}$ | 4.3 |
| total transmission［\％］ | ＞ 97 |
| lens material | fused silica |
| LIDT（coating） | $1.0 \mathrm{~J} / \mathrm{cm}^{2}$ per 1 ns pulse at 50 Hz $1.0 \mathrm{MW} / \mathrm{cm}^{2} \mathrm{cw}$ |
| SP and USP usable［ $\checkmark / \mathrm{x}$ ］ | $\checkmark$ |
| weight［kg］ | 1.90 |
| cover glass | S4LPG4160／075 |
| accessory | －－－ |

## spot


－spot radius in $\mu \mathrm{m}$ at $86 \%$ level for a Gaussian laser beam $\left(M^{2}=1\right)$ with 7 mm diameter at $1 / \mathrm{e}^{2}$ ，clipped at 10 mm
－field size and mirror distances as given above for a 2 mirror scan system
－PRAM parameters：mechanical mirror scan angle

## notes

The aperture stop given is the point where the scan mirrors should be placed symmetrically around in order to reach best performance．In a 1 mirror system it is the position of the scan mirror． Aperture stop distance $=$ front focal point in telecentric $f$－theta lenses

The calculations of the scan length and scan areas of our f－theta lenses are based on the geometric design of typical scan systems with a certain mirror spacing．The values given assume a vignetting of less than $1 \%$ ．If used with non－typical scan systems or with scan systems which have been designed for larger or smaller laser beams，different scan lengths and scan areas will result．

Effective focal length and working distance have a tolerance of $+/-1.5 \%$
Graphs given by design

LIDT＝Laser Induced Damage Threshold，valid for the coating at design wavelength and gaussian intensity profil
General LIDT for lenses without SP／USP compatibility（short pulse or ultra short pulse）can be lower，depending on material and internal reflections．

