MODEL NUMBER:

(R) 64020-250-1ADMDFS-A SPECIFICATIONS

Document Number: 56A18993B

A Digital Frequency Synthesizer OEM Module with Analog and Digital Modulation input and a 1 Watt RF Output. The unit can be used to generate a frequency chirp. When specified as R64020-250-1 ADMDFS-A, the unit delivered will be manufactured to be compliant with EU Directive 2002/95/EC for Reduction of Hazardous Substance.

PARAMETER

Bandwidth:
Clock Frequency:
Step Size:
Frequency Settling Time:
Power Out:
Harmonic Distortion: $\quad 2^{\text {nd }}$:
Analog Modulation:
Digital Modulation:

Rise and Fall Time:
Extinction Ratio:
Digital:
Analog:
Reference Out:

Applied Power:

Outline Drawing

MAXIMUM RATINGS:

Ambient Temperature:
RF Output:

INPUT / OUTPUT CONNECTIONS:

$+28 \mathrm{~V},+3.3 \mathrm{~V}$, and Gnd
Mod In
Reference Out
RF Output
"Frequency Select" Control

SPECIFICATION

$20-250 \mathrm{MHz}$ typical
1000 MHz
$<1 \mathrm{~Hz}$ with 30 Bits input
310 ns Maximum
1 watt typical
-20 dBc Maximum
-15 dBc Maximum
0 to +1 volt Analog into $50 \Omega,+1$ volt $=$ Full RF power output.
TTL levels
TTL Active High = Full RF output power
TTL Active Low $=$ Minimum RF output power No Signal = Full RF output power (pulled high internally)

20 ns

30 dB Minimum
40 dB Minimum
A reference signal from the un-modulated output of the synthesizer. 0 dBm nominal
+28 volts DC @ 1 amp Maximum
+3.3 volts DC @ 1 amp Maximum
53D3887
$40^{0} \mathrm{C}$
No DC Feedback

Filtered Feedthru
SMC Male
SMC Male
SMA Female
TTL 30 bit binary word, Digital Modulation Input, Reset, and a Latch control input through the 37 pin D sub connector.
See page 2 for pinout.

64020-250-1 ADMDFS-A

"FREQUENCY SELECT" PIN OUT
 37-PIN MALE D-SUB CONNECTOR

$\underline{\text { PIN }}$		PIN	
1	$\mathrm{FS}_{0} \quad$ LSB	20	FS_{1}
2	FS_{2}	21	FS_{3}
3	FS_{4}	22	FS_{5}
4	FS_{6}	23	FS_{7}
5	FS_{8}	24	FS9
6	FS_{10}	25	FS_{11}
7	FS_{12}	26	FS_{13}
8	FS_{14}	27	FS_{15}
9	FS_{16}	28	FS_{17}
10	FS_{18}	29	FS_{19}
11	FS_{20}	30	FS_{21}
12	FS_{22}	31	FS_{23}
13	FS_{24}	32	FS_{25}
14	FS_{26}	33	FS_{27}
15	FS_{28}	34	FS_{29} MSB
16	Latch	35	Digital Modulation Input (Active High)
17	Master Reset (Active High)	36	Delta Frequency Latch
18	N/C	37	N/C
19	Ground		

CONTROL WORD CALCULATIONS

The output frequency and step size is a function of the clock rate and the FREQUENCY SELECT (FS) data. The output frequency can be calculated from the formula:

$$
\mathrm{FS}_{[29: 0]}=\frac{\mathrm{Fout}^{\left(2^{31}\right)}}{1000 \mathrm{MHz}} \quad \text { Where Fout is output frequency in } \mathrm{MHz}
$$

The LATCH function (pin 16) is a TTL compatible input which is used to load new frequency information into the driver. Frequency data is loaded into the driver when the signal on the LATCH pin goes from HIGH to LOW (falling edge).

The DELTA FREQUENCY LATCH function (pin 36) is a TTL compatible input which is used to load new data frequency information into the driver. For Delta frequency word, the same calculation is used as the output frequency with negative values being entered in twos complement data is loaded on the falling edge.

Master RESET is a TTL active HIGH and resets the accumulator to zero, ie, no frequency output, when a TTL HIGH is applied to pin 17 . This is pulled LOW via. a $1 \mathrm{~K} \Omega$ resistor.

To generate a single frequency, apply the binary frequency word to the FS input, A falling edge on the LATCH input will then load the data and change the frequency.

To generate a ferquency chirp, set the starting frequency as above and then apply the delta word to the FS input. A falling edge on DLATCH will then load the delta frequency word and initiate the chrip. The chirp will stop and output will return to to starting value or a rising edge.

