MODEL NUMBER：

（R）64020－200－2ADMDFS－A
 SPECIFICATIONS

Document Number：56A18641E
A Digital Frequency Synthesizer OEM Module with Analog and Digital Modulation input and a 2 Watt RF Output． When specified as R64020－200－2ADMDFS－A，the unit delivered will be manufactured to be compliant with EU Directive 2002／95／EC for Reduction of Hazardous Substance．

PARAMETER

Bandwidth：
Clock Frequency：
Step Size：
Frequency Settling Time：
Power Out：
Harmonic Distortion：$\quad 2^{\text {nd }}$ ：

Analog Modulation：
Digital Modulation：

Rise and Fall Time：
Extinction Ratio：
Digital：
Analog：
Reference Out：

Applied Power：
MAXIMUM RATINGS：
Ambient Temperature：
RF Output：
Supply Voltage：

INPUT／OUTPUT CONNECTIONS：
 $+28 \mathrm{v},+3.3 \mathrm{~V}$ ，and Gnd
 Mod In
 Reference Out
 RF Output
 ＂FREQUENCY SELECT＂Control

Outline Drawing

SPECIFICATION

$20-200 \mathrm{MHz}$ typical
1000 MHz
$<1 \mathrm{~Hz}$ with 30 Bits input
250 ns Maximum
2 watts typical
-20 dBc Maximum
-15 dBc Maximum
0 to +1 volt Analog into $50 \Omega,+1$ volt $=$ Full RF power output．
TTL levels
TTL Active High＝Full RF output power
TTL Active Low $=$ Minimum RF output power
No Signal＝Full RF output power（pulled high internally）
20 ns

30 dB Minimum
40 dB Minimum
A reference signal from the un－modulated output of the synthesizer．+0 dBm nominal
+28 volts DC＠ 1 amp Maximum
＋ 3.3 volts DC＠1 amp Maximum
$40^{0} \mathrm{C}$
No DC Feedback
30 volts DC
3.5 volts DC

Filtered Feedthru
SMC Male
SMC Male
SMA Female
TTL 30 bit binary word，Digital Modulation Input，Reset，and a Latch control input through the 37 pin D sub connector．
See page 2 for pinout．
53D3887

64020-200-2ADMDFS-A

"FREQUENCY SELECT" PIN OUT
37-PIN MALE D-SUB CONNECTOR

PIN		PIN	
1	$\mathrm{FS}_{0} \quad$ LSB	20	FS_{1}
2	FS_{2}	21	FS_{3}
3	FS_{4}	22	FS_{5}
4	FS_{6}	23	FS_{7}
5	FS_{8}	24	FS_{9}
6	FS_{10}	25	FS_{11}
7	FS_{12}	26	FS_{13}
8	FS_{14}	27	FS_{15}
9	FS_{16}	28	FS_{17}
10	FS_{18}	29	FS_{19}
11	FS_{20}	30	FS_{21}
12	FS_{22}	31	FS_{23}
13	FS_{24}	32	FS_{25}
14	FS_{26}	33	FS_{27}
15	FS_{28}	34	$\mathrm{FS}_{29} \quad \mathrm{MSB}$
16	Latch	35	Digital Modulation Input (Active High)
17	Master Reset (Active High)	36	N/C
18	N/C	37	N/C
19	Ground		

$$
\text { Control Word } \mathrm{K}_{10}=\frac{\operatorname{Fout}(\mathrm{Hz})\left(2^{31}\right)}{\operatorname{FosC}(\mathrm{Hz})} \text { in Decimal notation }
$$

CONTROL WORD CALCULATIONS

The output frequency and step size is a function of the clock rate and the "FREQUENCY SELECT" data. The output frequency can be calculated from the formula:

$$
\mathrm{f}_{\text {out }}=\frac{\left(\mathrm{f}_{\mathrm{c}}\right)\left(\mathrm{k}_{10}\right)}{2^{\mathrm{n}}}
$$

Where: $f_{c}=$ clock frequency in Hz
$\mathrm{k}_{10}=$ input word in decimal notation
$\mathrm{n}=31$ *See note below.
The minimum output frequency and step size are given by:

$$
\mathrm{f}_{\min }=\frac{\mathrm{f}_{\mathrm{c}}}{2^{\mathrm{n}}}
$$

An example of setting the frequency:
Clock frequency $=1000 \times 10^{6} \mathrm{~Hz}$
Desired output frequency $=30.00 \times 10^{6} \mathrm{~Hz}$

$$
\mathrm{K}_{10}=\frac{\operatorname{fout}(\mathrm{Hz})\left(2^{31}\right)}{\operatorname{fosc}(\mathrm{Hz})}
$$

$$
K_{10}=\frac{30 \times 10^{6}\left(2^{31}\right)}{\left(1000 \times 10^{6}\right)}
$$

$$
\mathrm{K}_{10}=64424509.44 \text { Decimal }
$$

$$
\begin{array}{cll}
\text { Convert } \mathrm{K}_{10} \text { to HEX } & \mathrm{V} \text { - MSB } \quad V \text { - LSB } \\
\mathrm{K}_{\text {HEX }}=3 \mathrm{D} 70 \mathrm{~A} 3 \mathrm{D} & \rightarrow \quad \text { 03D70A3D } \quad \text {-Setting for front panel "HEX" switches }
\end{array}
$$ NOTE: The switches on the front panel of the driver are LSB to MSB - right to left.

Convert $\mathrm{K}_{\text {HEX }}$ to Binary $\quad V$ LSB - pin1

$$
\begin{array}{ll}
\qquad \mathrm{K}_{\mathrm{B}}=\underline{0000} 11110101110000101000111101 & \text {-Setting for binary word input to back } \\
\text { These } 4 \text { bits are added to complete the } 30 \text { bit word } & \underline{\text { panel "FREQUENCY SELECT" } 37 \text { pin }} \\
\text { D-sub connector }
\end{array}
$$

*Note: This system only uses 30 bits to set the frequency output from the driver. The accumulator inside the chip is 31 bit, so use 2^{31} in your calculations for precision.
The LATCH function (pin 16) is a TTL compatible input which is used to load new frequency information into the driver. Frequency data is loaded into the driver when the signal on the LATCH pin goes from HIGH to LOW (falling edge).
Master RESET is a TTL active HIGH and resets the accumulator to zero, ie, no frequency output, when a TTL HIGH is applied to pin 17. This is pulled LOW via. a $1 \mathrm{~K} \Omega$ resistor.

To generate a single frequency, apply the binary frequency word to the FS input, A falling edge on the LATCH input will then load the data and change the frequency.

To generate a ferquency chirp, set the starting frequency as above and then apply the delta word to the FS input. A falling edge on DLATCH will then load the delta frequency word and initiate the chrip. The chirp will stop and output will return to to starting value or a rising edge.

