

AOM Driver 3307 Series

1 to 4 Watt RF Drivers for Acousto-Optic Modulators

The 3307 Series RF driver provides up to 4 Watts output power. Various types cover a frequency range of 80 to 350 MHz .

The maximum RF output power is adjustable by an internal potentiometer. The driver is available in either analogue or digital modulation control. The analogue modulation voltage controls the output power from 0 to 100% of the adjusted maximum power. The digital modulation control signal can switch on and off the RF power.

The driver can be operated with modulation frequencies (analogue and digital) up to 25% of the carrier frequency and 50 MHz maximum at the higher carrier frequencies.

Optimum EMC shielding and mechanical protection is achieved by an aluminium casing. The base plate serves for mounting and heat dissipation purposes.

Many options are available with this driver including frequency tuning, automatic level control (ALC) and an external amplifier that can boost output power up to 20 Watts.

Key Features:

Frequency range 80 to 350 MHzRF output power up to 4 WattRF on/off ratio $\geq 35 \mathrm{~dB}$ (Digital Modulation)RF on/off ratio $\geq 35 \mathrm{~dB}$ (Analogue Modulation)Constant output power designModels with a modulation frequency up to 50 MHz availableConductive cooling through base plateCompact casing
Applications:

Fast modulation components for extra cavity applications, e. g. laser projection systemsFrequency shifting
Technical Data

Supply Voltage	＋24V DC，＋28V DC
Supply Current	550 mA nom． with Pout $=0.35-1.5 \mathrm{~W} @ 24 \mathrm{~V}$ 550 mA nom． with Pout $=0.35-1.5 \mathrm{~W} @ 28 \mathrm{~V}$ 700 mA nom．with Pout $=2.0-4.0 \mathrm{~W} @ 24 \mathrm{~V}$ 700 mA nom． with Pout $=2.0-$ 3．0W＠28V（VI） 2000 mA nom．with Pout $=7.0 \mathrm{~W} @ 24 \mathrm{~V}^{(1)}$ 2700 mA nom．with Pout $=20 \mathrm{~W} @ 24 \mathrm{~V}^{(1)}$
Output Impedance	50Ω（nominal）
Maximum RF Power（adjustable）	＜0．1 W ．．．＞Pout
Frequency Accuracy	$\pm 0.1 \%$
Harmonic Distortion ${ }^{(11)}$	$\leq-20 \mathrm{dBc}$
Analogue modulation	
Impedance	50Ω（nominal）
Voltage range＠ 50Ω	$0 \ldots+1 \mathrm{~V}^{\text {（III）}}$
RF ON／OFF ratio	$\geq 35 \mathrm{~dB}^{\text {（v）}}$
Digital modulation	
Impedance	50Ω（nominal）
Level	Standard TTL ${ }^{(v)}$
RF ON／OFF ratio	$\geq 35 \mathrm{~dB}$
RF Output Frequencies ${ }^{\text {（VVII）}}$	80，110，150，200， 260 \＆ 350 MHz
RF Rise／Fall Times	12 nsec ＠ 80 MHz
（Rise＝10\％to 90\％）	9 nsec ＠ 110 MHz
（Fall＝90\％to 10\％）	7 nsec ＠ 150 MHz
	5 nsec ＠ 200 MHz
	4 nsec ＠ 260 MHz
	4 nsec ＠ 350 MHz

${ }^{(1)} 7 \mathrm{~W}$ and 20W versions use an external amplifier．
（II）Into 50Ω load
（III）Part numbers $\mathbf{- 5 2}$ and -58 are $\leq-30 \mathrm{dBc}$
（IV）Part number－40 is $\geq 42 \mathrm{~dB}$
（v）Part numbers－12，－43 are（OFF：＜＋0．3V，ON：
＋1．0V）
${ }^{(\text {VII }) ~ P a r t ~ n u m b e r s ~-03, ~-18, ~-22, ~}-31,-44,-69$ ：
550mA nom．
（vil）Other custom frequencies are available
Connectors

RF output connector	SMA（female）${ }^{(1)}$
Modulation connector	SMB（male）${ }^{\text {（1）}}$
Frequency Tuning connector	SMC（male）
Reference Frequency connector	SMC（male）
ALC Connector	
Input	Solder terminal（filtered feed－thru）
Ground	Solder lug
Power Supply connector	
Input	Solder terminal（filtered feed－thru）${ }^{(11)}$
Ground	Solder lug ${ }^{(11)}$

${ }^{(1)}$ Part number -12 \& -43 have SMB (male)
(II) Part numbers -12, -29 \& -43 have SMA
(female)
(III) Part numbers -45 \& -50 have Mini-Universal

Mate-N-Lok connector

Frequency Tuning

Input Impedance	$1 \mathrm{k} \Omega$ nominal
FM Bandwidth (3 dB)	90 kHz
Frequency Range	Input Voltage
$50-100 \mathrm{MHz}$	+1.5-+15 V nominal()
75-150 MHz	+1.5-+15 V nominal ${ }^{(1)}$
150-280 MHz	+2.0-+15 V nominal ${ }^{(11)}$
200-380 MHz	+1.0-+15 V nominalvi)
$270-430 \mathrm{MHz}$	+2.5-+12 V nominal(${ }^{\text {(}}$

(I) Part numbers -04, -25 and -68
(II) Part numbers -23, -49 and -59
(iII) Part numbers -17, -28 and -48
(IV) Part numbers -62 and -63
(V) Part number -70

ALC (Auxiliary Level Control)

Reference Frequency

Output Reference Frequency

Fc divided by $256{ }^{(1)}$
${ }^{(1)}$ Part number -21

Cooling, Dimensions, Weight

Cooling	Conduction Base plate should be attached to suitable heat sink capable of dissipating:
Pout	15 W
$1.0 \mathrm{~W}-1.5 \mathrm{~W}$	20 W
$2.5 \mathrm{~W}-3.0 \mathrm{~W}$	22 W
4.0 W	$4 \times 1.12 \times 3.15[102 \times 29 \times 80]$
Dimensions inches [mm]	$0.53[0.24]($ nominal $)$
L x W x H	

Environmental Conditions

Warm-up Time	$\mathbf{5}$ minutes (nominal)
Base Plate Temperature	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	For optimum output power stability constant base plate temperature should be provided
	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (non condensing)
Storage Temperature	

Absolute Maximum Ratings

Supply Voltage	$\mathbf{+ 2 8} \mathrm{VDC}$
Analogue Modulation	-3.0 V to +3.0 V
Digital Modulation	-4.3 V to +4.3 V
Operating Temperature	$+65^{\circ} \mathrm{C}$ (base plate temperature)

Quality Standards

EU 2002/95/EC (RoHS)	Compliant
Burn-in	12 Hours min @ $+25^{\circ} \mathrm{C}$ and Pout

Outline Drawing:

(Dimensions in inches)

Variant List / Ordering Codes

Other Frequencies and customized versions available upon request.

